Контакты

Веселов, Геннадий Васильевич - Расчет эффективности использования альтернативных видов топлива на судах: методические указания. Транспортные судна могут использовать энергию ветра и солнца для экономии топлива Применение альтернативных топлив на судах

УДК 629.735;

АНАЛИЗ ОПЫТА ПРИМЕНЕНИЯ АЛЬТЕРНАТИВНЫХ ТОПЛИВ НА ВОЗДУШНЫХ СУДАХ

Д.Р.САРГСЯН

Статья представлена доктором технических наук, профессором Зубковым Б.В.

В статье анализируется опыт применения альтернативных топлив на воздушных судах, виды и особенности топлив. Описываются требования к СПГ и обеспечению БП.

Ключевые слова: альтернативное топливо, виды альтернативных топлив, сжиженный природный газ (СПГ), безопасность полетов (БП).

Введение

Постоянно нарастающий спрос на авиаперевозки за последние годы развития экономики, а также техники и технологий вызвало большую потребность топливных ресурсов. Вследствие чего инженеры многих ведущих авиастроительных компаний в разных странах, в том числе и в России, начали разработки по обеспечению авиации новым видом топлива. Рассматривается огромное количество альтернатив керосину: биотопливо, синтетическая нефть, сжиженный природный газ (СПГ), водород. Весь накопившийся опыт с момента первого в мире полета на альтернативном топливе (самолета Ту-155 в 1988 году) показывает эффективность, экономичность и экологичность разработок в данном направлении.

В российской авиации рассматривается возможность использования СПГ, в частности, из-за запасов природного газа, а также сопутствующие нефтедобыче газы, которые сжигаются в факелах месторождений при добыче нефти. На данном этапе развития гражданской авиации наиболее близки к реализации проекты вертолетов и самолетов, которые применяют в качестве топлива сжиженные попутные газы, получаемые при добыче нефти (пропан и бутан).

Переоборудование воздушных судов требует минимальных затрат - лишь переделки топливных баков и системы подачи топлива в двигатели. Также требуется обеспечить аэропорты криогенными заправочными станциями, хранилищем топлива и инфраструктуры доставки СПГ до хранилищ. На данном этапе требуется не только участие авиапромышленного комплекса, но и участие газодобывающих компаний для создания соответствующей инфраструктуры.

Опыт применения

Альтернативу авиакеросину начали искать еще в середине ХХ века. История работ в ОКБ А.Н. Туполева по альтернативным видам топлива уходит в 60-е гг. - уже тогда рассматривалась возможность перевода силовых установок проектируемых в ОКБ А.Н. Туполева самолетов на жидкий водород.

В середине 70-х гг. Академией наук СССР совместно с рядом научно-исследовательских институтов и конструкторских бюро была разработана программа научно-исследовательских и опытно-конструкторских работ по широкому внедрению альтернативных видов топлива в народное хозяйство. Так 15 апреля 1988 года впервые поднялся в небо Ту-155 с экспериментальным двигателем НК-88 на криогенном топливе, который выполнил на СПГ и водороде почти 100 полетов. В октябре 1989 года этот самолет совершил показательный перелет по маршруту Москва-Братислава-Ницца (Франция) на 9-й Международный конгресс по природному газу. В июле 1991 г. самолет совершил полет по маршруту Москва- Берлин для участия в Международном конгрессе по природному газу.

При разработке этого самолета была создана экспериментальная база для испытания крио-

генного оборудования и сложился единственный в мире коллектив высококвалифицированных специалистов в области криогенной авиации. В результате этой работы были определены пути создания самолетных и аэродромных криогенных систем и оборудования. Однако в ОКБ А.Н.Туполева продолжились работы в этом направлении, на уровне технических предложений разработаны проекты модифицированных криогенных самолетов Ту-204 (Ту-204К), Ту-334 (Ту-334К), Ту-330 (Ту-330СПГ), нового регионального самолета Ту-136. Кроме того, эти самолеты будут способны одновременно применять альтернативные топлива и авиационный керосин, что делает их более универсальными и надежными. Наиболее глубоко проработаны модификации самолета Ту-204 (Ту-204К) и проект нового регионального самолета Ту-136, учитывающий особенности криогенного топлива (рис. 1).

Топливная экономичность самолетов Ту-334К и Ту-330СПГ практически не будет отличаться от базовых Ту-334 и Ту-330. Все эти самолеты могут быть переоборудованы под применение СПГ в течение 3-4 лет. Особое внимание заслуживает проект грузопассажирского регионального криогенного самолета Ту-136 с двумя турбовинтовыми двигателями ТВ7-117СФ, способного при небольших доработках применять СПГ, жидкий водород и пропан-бутановое топливо.

Виды и особенности альтернативных топлив

Самым распространенным альтернативным топливом можно считать сжиженный природный газ (СПГ). Газ относится к категории криогенных топлив. Теплофизические и теплотехнические характеристики показывают ряд преимуществ авиационных сконденсированных топлив (АСКТ) перед традиционным авиакеросином ТС-1. Также существуют синтетические топлива, получаемые из угля, газа, биомасс и растительного масла. Но синтез таких веществ требует дополнительных затрат на переработку угля, биомасс и растительных масел, что дороже керосина, и ему сопутствуют те же проблемы ресурсов и экологии. Поэтому оно вряд ли может рассматриваться как перспективное. Спирты (этиловый и метиловый) и аммиак также могут заменить керосин, но они почти в два раза уступают ему по

теплоте сгорания, следовательно, их удельный расход будет больше. Кроме того, в выхлопе при сгорании этих топлив содержатся вредные окиси азота и углерода.

В качестве альтернативы керосина для авиации может быть рассмотрено криогенное топливо - жидкий водород Н2 и легкие углеводороды от метана СН4 до пентана С5Н12.

К преимуществам водорода как авиационного топлива можно отнести следующее:

Во-первых, наибольшую теплоту сгорания на единицу массы, что дает удельный расход топлива примерно в три раза меньший, чем у керосина. Это позволяет существенно улучшить летно-технические характеристики самолетов;

Во-вторых, наибольший хладоресурс на единицу массы (в 12-15 раз больше, чем у керосина), что можно эффективно использовать для охлаждения горячих деталей двигателя и самолета;

В-третьих, повышенную температуру самовоспламенения и меньшую излучательную способность, что положительно скажется на работе камеры сгорания.

Однако водородному топливу присущи недостатки, требующие решения сложных технических проблем. Жидкий водород серьезно уступает стандартным авиакеросинам по объемной теплоте сгорания из-за низкой (почти в 11 раз меньше, чем у керосина) плотности, что значительно ухудшает габаритно-весовые характеристики ЛA при переходе с авиакеросина на водород.

Преимущества легких углеводородов также относиться к категории преимуществ водорода, но отличаются доступностью и дешевизной получения (табл. 1).

Таблица 1

Теплофизические и теплотехнические характеристики водорода, углеводородных компонентов АСКТ и авиационного топлива ТС-1

Показатель Н (водород) СН4 (метан) С2Н6 (этан) С3Н8 (пропан) С4Н10 (бутан) С5Н12 (пентан) ТС-1

М 2,016 16,04 3007 44,10 5812 7215 140

t пл., С -259,21 -182,49 -183,27 -187,69 -138,33 -129,72 -60

С -252,78 -161,73 -88,63 -42,07 -0,50 36,07 180

t ж.с., C 6,43 20,76 94,64 145,62 137,83 165,79 290

пл. кг/м 77,15 453,4 650,7 733,1 736,4 762,2 835

кип., кг/м 71,05 422,4 546,4 582,0 601,5 610,5 665

Qн,кДж/кг 114480 50060 47520 46390 45740 45390 43290

Qv.пл, кДж/дм 8832 22700 30920 34010 33680 34550 36150

Qv,кип, кДж/дм 8136 21150 25970 27000 27530 27710 28900

Нисп, кДж/кг 455,1 511,2 485,7 424,0 385,5 3575 287

и, С 510 542 518 470 405 284 -

^н, см/с 267 33,8 40,1 39,0 37,9 38,5 39

Сн, %(об) 4,1 5,3 3,0 2,2 1,9 - 1,2

Св,%(об) 75,0 15,0 12,5 9,5 8,5 - 7,1

Ro, Дж/(кг С) 4157,2 518,8 276,7 188,6 143,2 115,5 59,4

Lо, кгвозд/кгтопл 34,5 17,19 16,05 15,65 15,42 15,29 -

СПГ - (метан) его плотность (даже при температуре кипения) в 1,7 раза больше, чем у керосина, что приводит к необходимости увеличения объемов топливных баков более чем в 1,5 раза (при равной энергоемкости). Кроме того, метан имеет очень низкий диапазон нахождения в жидкой фазе (-20 С), низкую критическую температуру (-82,6 С). Это вызывает необходимость

создания для баков, арматуры и коммуникаций топливных магистралей новых хладостойких конструкций у уплотнительных материалов, а также высококачественной низкотемпературной теплоизоляции, предотвращающей быстрое вскипание метана и обледенения конструкции.

В отличие от керосина, метан в камеру сгорания двигателя для исключения двухфазного состояния придется подавать в газообразном виде, что полностью исключает использование штатных топливных агрегатов, коммуникаций, коллекторов и форсунок. Это значительно усложняет конструкцию двигателя, а в ряде случаев делает невозможной его модификацию для питания двумя видами топлива.

Из-за этих же свойств жидкого метана потребуются весьма громоздкие и дорогостоящие наземные средства для его транспортировки, хранения, заправки и т.д., близкие по своим параметрам к водородным. Дооборудование криогенно-топливной базы аэропорта должно включать в себя специальные хранилища, оборудованные тепловой защитой, средствами поддержания криогенного состояния топлива и устройствами, предотвращающими его потери, а также сеть приемораздаточных устройств, парк специальных транспортных средств с теплоизолированными емкостями и т.п.

В то же время по массовой теплоте сгорания метан превосходит керосин на 14%, что обеспечит дальность полета и полезной нагрузки. Сжиженный метан имеет охлаждающую способность в 5 раз выше, чем у керосина, что позволяет использовать хладоресурс для охлаждения деталей и узлов двигателя. Опыт эксплуатации газотурбинных двигателей, применяемых в качестве нагнетателей на компрессорных станциях газопроводов и работающих на природном газе, показал, что срок службы таких двигателей увеличивается на 25%.

Безопасность полетов при применении СПГ

К основным видам опасностей, создаваемых специфическими свойствами, сжижению углеводородных газов, в том числе и СПГ, а также условиями их производства, хранения, транспортировки и заправки относятся: огнеопасность (пожароопасность), взрывоопасность, химическая активность, воздействие низких температур, токсичность. Правила безопасности при производстве, хранении и выдаче сжиженного природного газа (СПГ) на газораспределительных станциях магистральных газопроводов (ГРС МГ) и автомобильных газонаполнительных компрессорных станциях (АГНКС) содержат организационные, технические и технологические требования по организации безопасности производства, выполнение которых является обязательным для всех предприятий, производящих и перевозящих СПГ, при проектировании и эксплуатации комплексов по производству, хранению и выдаче СПГ.

Для обеспечения безопасной эксплуатации такого топлива необходимо располагать качественными и количественными методами оценки и сравнения каждого вида опасности. Качественная и количественная оценка, т.е. определение вида и степени опасности, позволяет провести сравнительный анализ сконденсированного топлива по критериям опасности, и в перспективе формализовать задачу выбора технических средств и методов безопасной эксплуатации топливных систем, использующих СПГ, а также его хранения и транспортировки.

Требования к кандидатам на получение Сертификата технической подготовленности обслуживанию самолета предъявляются по тем характеристикам, которые непосредственно влияют на обеспечение безопасности полетов и на выполнение производственных заданий в установленные сроки.

К ним относятся:

А - возраст;

Б - психофизическая способность выполнять предстоящую работу;

В - базовая подготовка (вуз, училище, техникум, профтехучилище и т.п.);

Г - специальная подготовка для работы на данном виде воздушного судна или AT, знание конкретной авиационной техники, назначения и содержания её технического обслуживания, технологии выполнения и контроля качества работ на ней, применяемого оборудования;

Д - умение выполнять работы, предусмотренные функциями, право на осуществление которых представляет запрашиваемый Сертификат;

Е - общий опыт работы на авиационной технике.

Как показал анализ требований по безопасной эксплуатации самолета Ту-154 при заправке и хранении топлива (СПГ), инженерно-технический персонал ИАС должен знать особенности применения этого вида топлива.

ЛИТЕРАТУРА

1. Альтернативные виды авиационного топлива / Материалы совещания по международной авиации и изменению климата. Документ ИКАО HLM-ENV/09-WP/9.- Монреаль, 10.08.09.

2. www.tupolev.ru Криогенная техника.

3. Правила безопасности при производстве, хранении и выдаче сжиженного природного газа (СПГ) на газораспределительных станциях магистральных газопроводов (ГРС МГ) и автомобильных газонаполнительных компрессорных станциях (АГНКС) ПБ 08-342-00.

ANALYSIS EXPERIENCE OF ALTERNATIVE FUELS ON AIRCRAFT

In article the technique of carrying out of expert estimations of activity of aviation enterprise of the civil aircraft directed on increase of level of safety of flights is presented.

Key words: increase of level of safety of flights, questioning, aviation enterprises, expert estimations.

Саргсян Давид Робертович, 1982 г.р., окончил МГТУ ГА (2010), аспирант МГТУ ГА, автор 2 научных работ, область научных интересов - безопасность полетов, альтернативное топливо, ремонт и модернизация ВС.

© Тишинская Ю.В., 2014

Актуальность данной темы обуславливается тем фактом, что судну для его функционирования необходимо большое количество топлива, что пагубно сказывается на состоянии окружающей среды, так как огромные грузовые корабли ежегодно выбрасывают в атмосферу миллионы кубометров углекислого газа, нанося огромный вред атмосфере и приближая таяние ледников на полюсах. Также в связи с нестабильными ценами на нефтепродукты и ограниченные запасы этих ископаемых заставляют инженеров постоянно искать альтернативные виды топлива и источники энергии.

Мировое судоходство является основным источником загрязнения окружающей среды, так как мировая торговля требует огромное количество потребления нефти и других горючих материалов для морских судов, но поскольку все больше внимания уделяется сокращению выбросов СО2, становится понятно, что настало время внесения изменений в силовые установки или вовсе найти им замену.

В настоящее время в рамках только одной страны потребление моторных топлив, производимых из нефти, может достигать сотни миллионов тонн. При этом автомобильный и морской транспорт являются одними из основных потребителей нефтепродуктов и останутся главными потребителями моторных топлив на период до 2040-2050 гг.

Также существенным толчком к развитию данного вопроса является тот факт, что в соответствии с требованиями Международной конвенции по предотвращению загрязнения с судов происходит планомерное ужесточение требований к содержанию оксидов серы, азота и углерода, а также твердых частиц в выбросах морских судов . Эти вещества наносят огромный вред окружающей среде и являются чуждыми любой части биосферы.

Наиболее жесткие требования выдвигаются для Районов Контроля Выбросов (Emission Control Areas - ECA). А именно:

· Балтийское и Северное моря

· прибрежные воды США и Канады

· Карибское море

· Средиземное море

· побережье Японии

· Малаккский пролив и др.

Таким образом , изменения норм по выбросам оксида серы с морских судов в 2012 году составляет 0 % и 3,5 % в особых районах и во всем мире соответственно. А к 2020 году нормы по выбросам оксида серы с морских судов в данных районах аналогично составят 0 %, а во всем мире уже снизятся до 0,5 % . Отсюда следует, необходимость решения проблемы снижения химических выбросов в атмосферу вредных веществ судовыми энергетическими установками и поиск новых, более «дружелюбных» видов топлива или энергии для использования последних на судах.

Для решения этих вопросов предлагается внедрение инноваций в двух различных направлениях:

1) Использование новых, более экологичных и экономичных видов топлива при эксплуатации судов;


2) Отказ от привычного нам топлива в пользу использования энергии солнца, воды, ветра.

Рассмотрим первый путь. Основными видами альтернативных топлив являются следующие:

Биодизель - это органическое топливо, производимое из масленичных культур.

Цена биодизеля марочного примерно в два раза выше цены обычного дизельного топлива. Исследования, проведённые в 2001/2002 годах в США показали, что при содержании в топливе 20 % биодизеля, содержание вредных веществв выхлопных газах увеличивается на 11 % и только использование чистого биодизеля уменьшает выбросы на 50 %;

Спирты - это органические соединения, содержащие одну или более гидроксильных, непосредственно связанных с атомом углерода. Спирты запрещены как топливо с низкой температурой вспышки;

Водород - это единственный вид топлива, продуктом сгорания которого не является углекислый газ;

Используется в двигателях внутреннего сгорания в чистом виде или в виде присадки к жидкому топливу. Опасность его хранения на судне и дорогостоящее оборудование для подобного использования делают данный вид топлива совершенно не перспективным для судов;

Водотопливная эмульсия производится на судне в специальной установке - при этом экономится топливо, уменьшаются выбросы оксида азота (до 30 % в зависимости от содержания воды в эмульсии), но не оказывает существенного влияния на выбросы оксида серы;

Сжиженные и компримированные горючие газы позволяют полностью исключить выбросы серы и твердых частиц в атмосферу, кардинально - на 80 % снизить выбросы оксидов азота, существенно - на 30 % снизить выбросы диоксида углерода .

Таким образом , можно утверждать, что единственным новым видом топлива, применение которого существенно влияет на экологические показатели судовых двигателей, является природный газ.

Перейдем к рассмотрению второго пути. Ветер и солнце являются самыми распространенными источниками энергии на земле. Многие организации предлагают всевозможные проекты по внедрению их в повседневную жизнь .

В международной практике существует уже несколько реализованных и еще нереализованных проектов судов с использованием энергии ветра и солнца для своего плавания.

В стремлении сократить расход топлива на больших торговых судах флота в мировом океане группой из Токийского университет был разработан проект “Wild Challenger”.

Используя гигантские выдвижные паруса, размеры которых составляют 50 метров в высоту и 20 метров в ширину, годовой расход топлива может быть снижен почти на 30 процентов. Для получения максимальной тяги паруса управляются индивидуально, и каждый парус является телескопическим с пятью ярусами, что позволяет складывать их, когда погода становится неблагоприятной. Паруса полые и изогнутые сделаны из алюминия или армированного пластика, что делает их более похожими на крылья. Компьютерное моделирование, а также испытания в аэродинамической трубе показали, что данная концепция способна работать даже при боковом ветре. Таким образом, проект “Wind Challenger” действительно может стать развитием экономичных судов будущего поколения .

Компания “Eco Marine Power” разработала проект «Aquarius », что в переводе означает «Водолей». Особенностью данного проекта, является использование солнечных панелей в качестве паруса.

Такие паруса даже получили собственное название «жесткий парус». Они станут частью крупного проекта, который позволит морским судам без проблем задействовать альтернативные источники энергии, находясь в море, на рейде и порту. Каждая панель-парус будет автоматически менять положение с помощью компьютерного управления, которые разрабатывает японская компания «KEI System Pty Ltd ». Панели также могут быть убраны при неблагоприятных погодных условиях.

Последнее достижение в области солнечных технологий означает, что теперь можно использовать комбинацию солнечных батарей и паруса, и этот факт выводит данный проект на передовые позиции в области развития современного судостроения.

Система «Водолей » разрабатывается таким образом, что она не требует много внимания со стороны экипажа судна и относительно проста в установке. Материалы, из которых изготовлен жесткий парус и другие компоненты системы, подвергаются переработке.

Система «Aquarius » станет привлекательной для вложения средств судоходными компаниями и судовыми операторами, за счет быстрой окупаемости проекта .

Можно сделать вывод о том, что оба этих пути призваны решать одни и те же проблемы. Внедрение данных проектов оказывает значительное влияние на мировые морские перевозки, способствуя значительному снижению уровня загрязнения окружающей среды и сокращению расходов на топливо и обслуживание. Что выбрать – дело каждого. Более простой путь для внедрения – использование экономичного топлива, так как эта технологи не требует полной замены флота, а может быть применена на уже существующих судах, однако все же при этом сохраняется определенный уровень расходов на топливо и выбросы вредных веществ в атмосферу. Выбор в пользу постройки судов, которые в своей эксплуатации используют альтернативные источники энергии, с одной стороны, требует полной замены флота, но с другой исключает расходы на топливо и существенно снижают различные виды загрязнений окружающей среды.

Литература

1. Сокиркин В.А. Международное морское право: учеб.пособие / Сокиркин В.А.,

Шитарев В.С. – М: Международные отношения, 2009. – 384 с.

2. Шурпяк В.К. Применение альтернативных видов энергии и альтернативных

топлив на морских судах [Электронный ресурс]. - Режим доступа к документу:

http://www.korabel.ru/filemanager

3. Корабли будущего [электронный ресурс]. – Режим доступа к документу:

http://korabley.net/news/korabli_budushhego/2010-04-05-526

4. Экономичные суда возможны [электронный ресурс]. – Режим доступа к

документу:http://korabley.net/news/ehkonomichnye_suda_vozmozhny/2014-01-06-

5.Альтернативная система «Водолей» может изменить морские перевозки

[электронный ресурс]. – Режим доступа к документу: http://shipwiki.ru/sovremennye_korabli/na_ostrie_progressa/alternativnaya_sistema_emp_aquarius.html

Достигнув более 30 рублей за литр бензина марки Аи-92 на подавляющем большинстве АЗС. Кроме того, эксперты прогнозируют, что новые повышения цен на бензин неизбежны, и это естественно заставляет задаться вопросом, какие альтернативы могут быть бензиновым (и дизельным) автомобилям.

Давайте взглянем на некоторую статистику по ценам на топливо из продуктов переработки нефти:

Динамика роста цен на бензин Аи-92


Динамика роста цен на дизельное топливо


Статистика цен на бензин в различных странах

Ну, как выясняется, есть много таких альтернатив. И многие из них находятся на дороге к созданию или даже в дилерских центрах прямо сейчас. В то время как некоторые альтернативы займут некоторое время, прежде чем выйдут в круг широкого использования, всё же довольно интересно знать, в каких направлениях работают на сегодняшний день компании, которым не всё равно, на чём будут ездить машины в будущем... В обозримом будущем.

Итак, какие альтернативные виды топлива существуют на сегодняшний день?

Водород


Использование водорода в качестве топлива Вашего автомобиля может вызвать в воображении образы Гинденбурга, но это на самом деле вполне безопасно. Водород может на самом деле присутствовать в виде топлива как такового в двух различных типах автомобилей: автомобилей с топливными элементами в виде водорода и автомобилей, которые имеют двигатель внутреннего сгорания , который спроектирован, чтобы использовать водород вместо бензина.

В первом случае водород используется для выработки электроэнергии, которая затем используется для питания электродвигателя. Так водородный автомобиль использует топливный элемент для выработки собственной электроэнергии. В химическом процессе в топливном элементе водород и кислород объединены, чтобы создать электричество, и единственным побочным продуктом этого процесса является водяной пар. Эту технологию уже используют в автомобиле Honda FCX Clarity, и в настоящее время автомобиль получает всё больший рейтинг.

В двигателе внутреннего сгорания водород является источником топлива вместо привычного бензина или дизельного топлива. Вместо вредных выбросов CO 2 , которые производит бензин, опять же, водородные автомобили производят только водяной пар. Много автопроизводителей в настоящее время испытывают водородные автомобили. В настоящее время BMW Hydrogen 7 является, пожалуй, самым известным из них - компания сдала в аренду несколько опытных таких машин в Германии и США, и некоторые тесты даже показали, что автомобиль на самом деле очищает воздух вокруг себя во время работы.

Тем не менее, водородные автомобили пока не получили широкого распространения в значительной степени, потому что сегодня нет необходимой инфраструктуры водородных заправочных станций. А вот следующий вид альтернативного топлива несколько легче найти - и по сути, Вы используете его прямо сейчас.

Электричество

Может показаться, что электрические автомобили - это долгожданный прорыв в использовании альтернативных видов топлива. Но дело в том, что некоторые из самых ранних автомобилей уже использовали электродвигатели. Тем не менее, только из-за последних событий, включая широкое распространение как следствие активной PR-кампании автомобилей Тесла, электрические автомобили стали более жизнеспособным методом для повседневной езды.

Но что сдерживает технологию от проникновения в широкие массы? Технология батареи и электродвигателя. Перемещение автомобиля требует много энергии, и, чтобы делать это на высоких скоростях и на большие расстояния, требуется очень много энергии. В прошлом электрические автомобили не могли проезжать большие расстояния (более нескольких километров), и как только их батареи садились, требовались долгие часы, чтобы их перезарядить. Дело в том, что электродвигатель сам по себе достаточно прожорлив в плане потребления электроэнергии. Добавьте к этому огромный вес самого аккумулятора (в современном электромобиле он может составлять половину массы всей машины), и недостатки такого вида альтернативного топлива станут достаточно весомыми.

Тем не менее, с новыми технологиями аккумуляторных батарей некоторые автопроизводители преодолели такие ограничения. Новые батареи (литий-ионные батареи, если быть точным) являются такими же, какие установлены в Ваш сотовый телефон или ноутбук. Они заряжаются достаточно быстро и работают дольше. А автомобили, такие как Tesla Model S, используют их не просто для перемещения в физическом понимании этого слова, а для получения производительности, достойной суперкаров. Другие автомобили, которые также укрепляются на рынке, такие как Chevy Volt и Toyota Prius, например, используют эти типы батарей в сочетании с двигателем внутреннего сгорания, чтобы создать новый класс автомобиля с расширенным диапазоном использования источника передвижения. Батареи можно заряжать, подключив машину к обычной розетке; однако, когда заряд батареи начинает иссякать, включается бензиновый генератор, чтобы перезарядить её и не допустить остановки автомобиля.

Биодизель

Мы надеемся, что Вы прислушались к совету, что обезжиренная диета с ограниченным количеством жареной пищи хороша для Вашего здоровья. Впрочем, то же самое не обязательно справедливо для Вашего автомобиля.

Биодизель является одним из видов топлива, который производится из растительного масла. Любой автомобиль с дизельным двигателем может работать на нём, но не пытайтесь запустить двигатель, выжав перед этим в топливный бак салфетку, оставшуюся с Вашего последнего визита в Макдональдс. Для того, чтобы привести в движение машину, масло должно быть преобразовано в биодизельное топливо через определённый химический процесс.

Сам процесс можно реально сделать в домашних условиях. На самом деле, много любителей биодизеля делают своё собственное топливо с использованием растительного масла из местных ресторанов. Однако, существует небольшой риск, связанный с этим процессом. Если Вы сделаете это неправильно, Вы можете наделать много вреда для Вашего автомобиля (не говоря уже о своём доме и собственной безопасности). Прежде чем пытаться сделать биодизель по какому-либо найденному рецепту, убедитесь, что это хорошая идея, потренировавшись некоторое время с кем-то, кто уже успешно делал это.

Однако, энтузиасты по биодизелю по-настоящему довольны такой идеей. Такое топливо не только значительно дешевле и чище, чем ископаемое дизельное топливо, оно также придаст выхлопам Вашего авто запах картофеля-фри... Без шуток!

Этанол

Теперь Вы знаете, что можете запустить автомобиль даже на растительном масле, но что, если Вам критично не нравится ездить по городу, пахнущему фри или у Вас вовсе аллергия или неприятные ассоциации с этим запахом? Каковы другие варианты? На самом деле, есть и другие варианты заставить автомобиль работать на овощах.

Этанол также является одним из наиболее распространённых видов альтернативного топлива. Его часто добавляют в бензин в летнее время, чтобы помочь сократить вредные выбросы. Этанол, на самом деле, является одним из видов алкоголя (но даже не думайте пытаться его пить), произведённого из растительного материала. В Соединенных Штатах он обычно производится из кукурузы, в то время как в других странах, например, в Бразилии, его делают из сахарного тростника.

Сегодня достаточно немало автопроизводителей предлагают свои автомобили с многотопливными двигателями. Эти двигатели могут работать на традиционном бензине или этаноле E85 в топливной смеси, когда топливо состоит на 15 процентов из бензина и на 85 процентов из этанола. Этанол получил широкое признание как хороший способ удешевить бензин в странах, где нефть закупается из других стран - яркий пример этому - США. Тем не менее, требуется довольно много энергии, чтобы произвести этанол, поэтому там, где нефть стоит дешевле, так как добывается внутри страны (Россия и относится к таким странам), этанол не особо то и выгоден. Кроме того, существует необычное мнение, что, поскольку фермеры могут заработать больше денег, выращивая сельскохозяйственные культуры для производства этанола, они перестанут выращивать эти культуры для производства продуктов питания, что могло бы резко поднять цены на продовольствие.

Несмотря на эти опасения, этанол сегодня предлагает много преимуществ в качестве альтернативного топлива, а сеть этаноловых заправочных станций в ряде стран продолжает расти.

Сжиженный природный газ

Продолжая кулинарную тему, отметим следующий альтернативный вид топлива, который, впрочем, производится не из пищевых продуктов, но его также можно встретить на кухне. В отличие от этанола и биодизеля, это не то, что Вы могли бы съесть или выпить в исходной его субстанции, но это то, что топ-повара используют для приготовления пищи: природный газ.

Природный газ является ископаемым топливом. Да, это не совсем экологически чистый продукт, но в результате его использования в автомобилях производится несколько меньше вредных выбросов. Природный газ, который Вы часто используете, чтобы готовить пищу и согреть Ваш дом, является природным газом в виде очень низкого давления таким образом, чтобы он стал сжиженным, чтобы давать намного больше энергии и занимать при этом меньше места. Когда сжиженный природный газ (СПГ) сжигается, он освобождает гораздо больше энергии. Так, например, вместо того, чтобы просто нагревать суп - несжатый природный газ справляется с этим просто отменно, сжиженный природный газ может питать крупногабаритное оборудование, такое как грузовик. В общем-то это основная цель, для которой он используется - питание тяжёлых грузовиков, путешествующих на дальние расстояния.

Сжиженный нефтяной газ


Если Вы недавно были на пикнике, то Вы, вероятно, знакомы с нашим следующим альтернативным видом топлива: сжиженным нефтяным газом (или просто сжиженным газом). Всё ещё не уверены, что Вы видели это когда-либо? Ну, тогда вспомните газовые горелки с баллончиками с пропаном или грузовые "газельки" с красным баллоном пропана вместо бензобака!

Пропан является общим названием для сжиженного нефтяного газа, хотя это не совсем верно. Сжиженный нефтяной газ представляет собой углеводородный газ под низким давлением. Он состоит в основном из пропана, но также включает в себя другие углеводородные газы, и, прежде всего, это бутан. Сжиженный нефтяной газ хранится под давлением для того, чтобы находиться в жидком виде. Подобно сжиженному природному газу, сжиженный нефтяной газ (СНГ) даёт гораздо больше энергии, будучи плотным, и, следовательно, становится более полезным для питания легковых автомобилей и грузовиков.

Сжиженный газ работает в обыкновенном двигателе внутреннего сгорания после совсем небольших модификаций (правильно это называть установкой ГБО на автомобиль - адаптация машины под использование "пропана"). В то время как этот вид топлива не используется широко для автомобилей во многих странах, таких как США, к примеру, всё же в ряде стран до 10 процентов использования автомобильного топлива приходится на сжиженный нефтяной газ, и наша страна в этом плане - один из лидеров использования СНГ.

Сжатый природный газ

Последний из трёх видов альтернативного топлива, имеющих схожие названия и которые легко перепутать - это сжатый природный газ (СПГ), в котором преобладает метан.

Сжатый природный газ - это то же самое топливо, которое можно использовать в Вашем доме для приготовления пищи и отопления, и оно работает в Вашем доме. В случае транспортного средства СПГ также хранится в баллонах высокого давления. И это очередная модификация газообразного ископаемого топлива, которая является самой экологичной, производя меньше всего выбросов CO 2 в атмосферу при аналогичных показателях производительности, но при этом также является одним из самых громоздких - менее всего сжимается при его охлаждении под низким давлением, занимая гораздо большее пространство в машине, чем предыдущие два вида альтернативного топлива.

Сжатый воздух

Воздух есть везде, так почему бы не использовать его в качестве топлива для автомобиля? И, хотя это кажется бредовой идеей, ведь воздух попросту не горит, всё-таки автомобили могут работать на сжатом воздухе.

В таком типе машины воздух сжимается в трубах высокого давления. В то время, как типичный двигатель использует воздух, смешанный с бензином (или дизельным топливом), который затем зажигается искрой (или высоким давлением в случае дизеля) для выработки энергии, двигатель на сжатом воздухе использует расширение сжатого воздуха, поступающего из трубки высокого давления для привода поршней двигателя.

Тем не менее, автомобили на сжатом воздухе не работают полностью на этом самом воздухе. Электродвигатели также присутствуют на борту машины для сжатия воздуха, только потом отправляя его в трубки высокого давления автомобиля. Однако, эти машины не могут считаться полностью электрическими автомобилями, главным образом, потому что электродвигатели здесь не непосредственно питают авто, приводя в движение его колёса. Электродвигатели намного меньше, чем те электродвигатели, используемые в электроавтомобилях, где основной функцией двигателя является приведение в движение машины. Поэтому автомобили на сжатом воздухе потребляют гораздо меньше энергии, чем электромобили.

Жидкий азот

Жидкий азот является ещё одной альтернативой продуктам нефтепереработки. Как и водород, азот находится в изобилии в нашей атмосфере. Кроме того, как и водород, автомобили под питанием азота делают гораздо меньше вредных выбросов, чем бензин или дизельное топливо. Но, в то время как водород используется в топливных элементах автомобилей, а также двигателях внутреннего сгорания, автомобили на жидком азоте требуют совсем другой тип двигателя в целом.

В самом деле, жидкий азот использует двигатель, подобный двигателю, используемому в пневматической машине. В таком двигателе азот хранится в сжиженном состоянии под огромным давлением. Для питания автомобиля азот выделяется в двигатель, где он нагревается и расширяется, чтобы создать энергию. В то время как типичный бензиновый или дизельный двигатель использует горение, чтобы заставить двигаться поршни, двигатель на жидком азоте использует расширение азота для питания энергетических турбин.

Являясь экологичным и эффективным способом питания транспортного средства, жидкий азот сталкивается с теми же препятствиями, как и многие другие альтернативные виды топлива: отсутствие общенациональной сети заправочных станций для доставки его потребителям.

Уголь

Очередное альтернативное топливо в нашем списке, вероятно, является неожиданностью, и многие могут подумать, что это достаточно устаревший вид топлива.

Технически, уголь является относительно новым альтернативным топливом для автомобилей - косвенно, так или иначе, ведь всё новое - это хорошо забытое старое, хотя, некоторые поезда всё ещё приводятся в движение углём. Однако, в 21 веке владельцам не придётся бросать лопатой из ведра уголь в установки для сжигания, если это то, о чём Вы сразу подумали.

В то же время, как и электродвигатель в случае питания авто сжатым воздухом, уголь не питает двигатель напрямую. Давайте рассуждать: электрические транспортные средства (по большей части), не производят своё собственное электричество. Они несут в себе энергию в их заряженных батареях. А батареи получают свой ​​заряд от стандартной розетки, которая получает потенциальную энергию от электростанции, которая, в свою очередь, получает питание... от горящего угля в большинстве случаев. На самом деле, 50 процентов всей электроэнергии в мире происходит от угольных электростанций. Это означает, что, когда Вы проходите последовательно весь путь энергетической цепочки, много электрических машин на самом деле являются по сути машинами с питанием от угля.

В то время как уголь имеет аналогичные недостатки бензину, он также имеет некоторые преимущества. В пересчёте на километр поездки, электричество от угля является более дешёвым способом для питания автомобиля, чем бензин. Кроме того, во многих странах есть большие запасы угля - гораздо больше, нежели бензина. Кроме того, люди, которые получают электроэнергию из других источников, таких как гидроэлектростанции или атомные электростанции, ещё меньше загрязняют атмосферу.

Солнечная энергия


Только произнесите вслух это прекрасное название: "солнечный автомобиль"! Солнечный автомобиль является по сути обычным электромобилем с питанием от солнечной энергии, получаемой от солнечных батарей на автомобиле. Однако, солнечные батареи не могут в настоящее время быть использованы для прямого единоличного питания двигателя машины из-за недостаточности мощности, но они могут быть использованы для расширения диапазона питания и экономии электроэнергии от аккумуляторов таких электромобилей.

Диметиловый эфир

Диметиловый эфир (ДМЭ) является перспективным видом альтернативного топлива в дизельных двигателях, бензиновых двигателях и газовых турбинах, благодаря своему высокому цетановому числу (аналог октанового числа у бензина, определяющий качество сгорания топлива при его сжатии), которое составляет 55 единиц по сравнению с 40-53 единицами у дизельного топлива. При этом, совсем небольшие изменения необходимы для преобразования дизельного двигателя в диметилоэфирный двигатель. За счёт низкого количества вредных выхлопов, ДМЭ отвечает самым строгим нормам токсичности в Европе (Евро-5).

ДМЭ разрабатывается как синтетическое биотопливо второго поколения (BioDME), которое может быть изготовлено из лигноцеллюлозной биомассы, и в настоящее время наиболее активно его использует автоконцерн Volvo.

Аммиак

Двигатели, работающие на аммиачном газе, использовались ещё во время Второй мировой войны для приведения в движение автобусов в Бельгии. Жидкий аммиак также питает ряд ракетных двигателей во всём мире. Хотя он и не такой мощный и высокопроизводительный, как другие виды топлива, аммиак не оставляет сажи в многоразовых двигателях, а его плотность примерно соответствует плотности окислителя.

Аммиак уже давно был предложен в качестве практической альтернативы ископаемым видам топлива для двигателей внутреннего сгорания. Теплота сгорания аммиака составляет 22,5 МДж/кг, что составляет около половины от теплоты сгорания дизельного топлива. Аммиак может быть использован в существующих двигателях с довольно незначительными модификациями карбюраторов или инжекторов.

Однако, главным недостатком аммиака остаётся, конечно же, его высокая токсичность.

Водяной пар

Это по сути вымерший сегодня паровой автомобиль, который имеет паровой двигатель, и он также фактически работает на других видах топлива, которые и образуют этот самый водяной пар. В качестве топлива используются этанол, уголь и даже дерево. Топливо сжигается в котле, и тепло преобразует воду в пар. Когда вода превращается в пар, она расширяется. Расширение создает давление, которое толкает поршни, которые, в свою очередь, заставляют карданный вал вращаться.

Паровые автомобили требуют очень много времени между началом работы и приведением в движение такого авто, но некоторые из них могут достигать достаточно высокой скорости - более 160 км/ч в конце концов. Так, наиболее успешные автомобили начинали двигаться после запуска примерно через полминуты-минуту.

Паровой двигатель использует внешнее сгорание в отличие от двигателей внутреннего сгорания. Автомобили с питанием от бензина являются более эффективными при около 25-28% эффективности. Но это всё в теории, практические примеры паровых двигателей по эффективности составляют всего около 5-8% по сравнению с обычными ДВС.

Мускульная сила человека

О да, это самый неэффективный и не попросту не имеющий права на жизнь вид альтернативного топлива! Тем не менее, в очень небольших количествах транспортных средств, спрос на которые стремительно уменьшается, используется человеческая сила, чтобы улучшить показатели экономичности аккумуляторов, которые являются основным источником приведения в движение автомобиля. Два таких коммерческих авто, увидевших недолгий "свет", стали "Sinclair C5" и "Twike".

Водоросли

Биотопливо, полученное из водорослей, называют биотопливом третьего поколения - это относительно новый вид альтернативного топлива. По сути принцип работы двигателя на водорослях основывается на гниении этих водорослей, в результате которого выделяется метан, который используется в качестве основного топлива для приведения в движение машины.

В США рассчитали, что примерно 200 гектаров прудов, в которых будет выращиваться определённый вид водорослей, который лучше всего подходит для питания автомобилей, могут обеспечить таким топливом до 5% всех автомобилей страны. Тем не менее, в Соединённых же Штатах эта технология не прижилась из-за сравнительно более низкой стоимости нефти и высоких требований таких водорослей к росту (высокая температура и определённая окружающая среда).

Альтернативные виды топлива: сравнение

Вид топлива Плюсы Минусы Примеры известных автомобилей Оценка экологичности Стоимость по сравнению с бензином или дизелем
Водород Экологичность Высокая температура горения
BMW Hydrogen 7
Chevrolet Equinox
Высокая Высокая
Электричество Экологичность
Маленький объём двигателя
Бесшумность
Доступность источников питания (обычные розетки)
Большая масса аккумулятора
Низкий пробег на одном аккумуляторе
Долгая зарядка аккумулятора
Tesla Model S
Tesla Roadster
Chevy Volt
Toyota Prius
Высокая Низкая
Биодизель Простота изготовления биодизеля
Экологичность
Возможность использования в ДВС
Хорошие смазочные показатели
Высокое цетановое число
Необходимость долгого прогревания двигателя зимой
Низкий срок хранения (3 месяца)
Удорожание сельхозпродуктов в случае широкого потребления биодизеля
- Высокая Умеренно высокая
Этанол Хорошая возгораемость Практически невозможность использования зимой
Удорожание сельхозпродуктов в случае широкого потребления этанола
В странах, где нефть не добывается, использовать этанол невыгодно
- Средняя Низкая
Сжиженный природный газ Немного лучшая экологичность, чем у нефтепродуктов Трудность транспортировки крупных объёмов
Грузовые автомобили Средняя Умеренно низкая
Сжиженный нефтяной газ Нетоксичность
Высокое октановое число
Оснащённость инфраструктурой по АЗС
Любые автомобили после модификации установкой ГБО Средняя Умеренно низкая
Сжатый природный газ Высокий КПД
Нетоксичность
Экономичность
Опасность нахождения баллона под высоким давлением в автомобиле
Самая низкая сжимаемость при охлаждении
Специальная версия Honda Civic GX Средняя Умеренно низкая
Сжатый воздух Лучшая экономичность, нежели в электромобилях Низкая эффективность AirPod Высокая Низкая
Жидкий азот Экологичность
Полная замена двигателя
Опасность нахождения баллона под высоким давлением в автомобиле
Отсутствие инфраструктуры при активных разработках
Volkswagen CooLN2Car Высокая Аналогичная
Уголь - - - Низкая Умеренно низкая
Солнечная энергия Практически нулевая стоимость
Экологичность
Большая требуемая площадь для потребления энергии батареей Solar Challenge Высокая Низкая
Диметиловый эфир Высокое цетановое число
Экологичность
- Экспериментальные автомобили Volvo, Nissan и КАМАЗ Умеренно высокая Аналогичная
Аммиак Экологичность выхлопов Небольшая энергопроизводительность
Высокая токсичность
Goldsworthy Gurney
Специальная версия Chevrolet Impala
Средняя Аналогичная
Водяной пар Экологичность Долгий процесс приведения в движение автомобиля
Большой занимаемый объём
Дороговизна использования (требуется нагрев воды)
Очень низкая эффективность
Stanley Steamer Высокая Высокая
Мускульная сила человека Экологичность Самая низкая эффективность
Бессмысленность
Sinclair C5
Twike
Высокая Высокая
Водоросли Экологичность Требуются определённые условия для выращивания - Высокая Высокая

Потребление альтернативных видов топлива на 2011 год

Перспективы альтернативного топлива таковы, что уже сегодня мировые автопроизводители говорят о внедрении к 2010 году порядка 50 различных моделей, работающих на альтернативном виде горючего. В Европе особенно активны в этой области компании Mercedes-Benz, BMW, MAN. А к 2020 году, согласно резолюции ООН, нацелившей страны Европы на переход автомобилей на альтернативные виды моторного топлива, ожидается увеличение ТС на альтернативных видах топлива до 23% всего автопарка, из них 10% (порядка 23,5 млн. единиц) - на природном газе.

ТС на биотопливе

Биотопливо - использование биотоплива, например этанола (этилового спирта) или дизельного топлива (биодизеля), полученного из специально выращенных растений, обычно рассматривают как важный шаг к сокращению выбросов углекислого газа (СО2) в атмосферу. Конечно, при сжигании биотоплива углекислый газ попадает в атмосферу совершенно так же, как и при сжигании ископаемого топлива (нефти, угля, газа). Разница в том, что образование растительной массы, из которой было получено биотопливо, шло за счет фотосинтеза, то есть процесса, связанного с потреблением СО2. Соответственно, использование биотоплива рассматривается как «углерод-нейтральная технология»: сначала атмосферный углерод (в виде СО2) связывается растениями, а потом выделяется при сжигании веществ, полученных из этих растений. Однако стремительно расширяющееся производство биотоплива во многих местах (прежде всего в тропиках) ведет к уничтожению природных экосистем и утере биологического разнообразия.

Двигатели, работающие на биотопливе, используют энергию солнечного света, запасенную растениями. Энергия ископаемого топлива - это связанная энергия солнечного света, а выделяющийся при сжигании ископаемого топлива углекислый газ когда-то был изъят из атмосферы растениями и цианобактериями. Биотопливо ничем не отличается от обычного ископаемого топлива. Но разница есть, и определяется она временной задержкой между связыванием СО2 в ходе фотосинтеза и выделением его в процессе сжигания углеродосодержащих веществ. Кроме того, если связывание углекислого газа происходило в течение очень длительного времени, то высвобождение происходит очень быстро. В случае же использования биотоплива временной лаг совсем небольшой: месяцы, годы, для древесных растений - десятилетия.

При всех плюсах использования биотоплива быстрое увеличение его производства чревато серьезными опасностями для сохранения дикой природы, особенно в тропиках. В последнем номере журнала Conservation Biology появилась обзорная статья, посвященная вредным последствиям использования биотоплива. Ее авторы, (Martha A. Groom), работающая в рамках Междисциплинарной программы наук и искусств Вашингтонского университета в Ботелле (США), и ее коллеги Элизабет Грэй и Патрисия Таунсенд, проанализировав большой массив литературы, предложили ряд рекомендаций по тому, как сочетать получение биотоплива с минимизацией отрицательного воздействия на окружающую среду, с сохранением биоразнообразия окружающих природных экосистем.

Так, по мнению Грум и ее коллег, вряд ли заслуживает одобрения принятая во многих странах, и прежде всего в США, практика использования кукурузы как сырья для получения этанола. Культивирование кукурузы само по себе требует большого количества воды, удобрений и пестицидов. В результате, если учесть все затраты на выращивание кукурузы и производства из нее этанола, то окажется, что в сумме количество СО2, выделяющегося при изготовлении и использования такого биотоплива, почти такое же, как при использовании традиционного ископаемого топлива. Для этанола из кукурузы коэффициент, оценивающий выделение парниковых газов на определенный энергетический выход равен 81-85. Для сравнения, соответствующий показатель для бензина (из ископаемого топлива) составляет - 94, а для обычного дизельного топлива -83. При использовании сахарного тростника результат уже существенно лучше - 4-12 кг СО2/МДж.

Настоящий положительный скачок наблюдается при переходе к использованию многолетних трав, например одного из видов дикого проса - так называемого проса прутьевидного, обычного растения высокотравных прерий Северной Америки. Благодаря тому, что значительная часть связанного углерода запасается многолетними травами в их подземных органах, а также накапливается в органическом веществе почвы, территории, занятые этими высокими травами, функционируют как места связывания атмосферного СО2. Показатель эмиссии парниковых газов при получении биотоплива из проса характеризуется отрицательной величиной:

24 кг СО2/МДж (то есть СО2 становится меньше в атмосфере).

Еще лучше удерживает углерод многовидовой растительный покров прерий. Показатель эмиссии парниковых газов в этом случае также отрицательный:

88 кг СО2/МДж. Правда продуктивность таких многолетних трав относительно низкая. Поэтому и количество топлива, которое может быть получено с естественной прерии, составляет всего около 940 л/га. Для проса эта величина достигает уже 2750-5000, для кукурузы - 1135-1900, а для сахарного тростника - 5300-6500 л/га.

Очевидно, что замещая ископаемое топливо и снижая таким образом рост СО2 в атмосфере, биотопливо на самом деле может угрожать многим природным экосистемам, прежде всего тропическим. Дело, конечно, не в самом биотопливе, а в неразумной политике его производства. В уничтожении богатых видами природных экосистем и заменой их крайне упрощенными экосистемами сельскохозяйственных угодий. Большие надежды разработчики возлагают на использование в качестве сырья для биотоплива массы микроскопических планктонных водорослей, которые можно выращивать в специальных биореакторах. Выход полезной продукции на единицу площади при этом значительно выше, чем в случае наземной растительности.

В любом случае, необходимо оценить тот риск, который возникает для природных экосистем при культивировании растений, используемых в качестве сырья для биотоплива.

Транскрипт

1 Труды МАИ. Выпуск 87 УДК Применение альтернативных топлив в авиационных газотурбинных двигателях Силуянова М.В.*, Челебян О.Г.** Московский авиационный институт (национальный исследовательский университет), МАИ, Волоколамское шоссе, 4, Москва, A-80, ГСП-3, Россия *е- mail: **е- mail: Аннотация В данной работе приведены результаты экспериментального исследования влияния физических свойств жидкости на параметры топливовоздушного факела распыла за фронтовым устройством камеры сгорания газотурбинных двигателей пневматического типа. Для определения характеристик распыла и изучения процесса дробления и смешения альтернативных топлив с повышенной вязкостью разработано модельное биотопливо на основе керосина марки ТС-1. В результате проведенной работы получены ряд зависимостей характеристик среднего диаметра, скорости и концентрации капель топлива в потоке за горелкой для керосина и модельного биотоплива. Обобщив полученные данные, установлено, что при использовании вязких топлив необходимо применять способ пневматического распыла для обеспечения заданных рабочих параметров камеры сгорания газотурбинных двигателей.

2 Ключевые слова: фронтовое устройство, распыливание, биотопливо, пневматический, факел распыливания, форсунка, завихритель, камера сгорания. Ужесточение экологических требований ИКАО (Международная Организация Гражданской Авиации) по вредным выбросам от авиационных двигателей , заставляют ведущие державы вести поиск альтернативных источников энергии, в частности расширять сферу применения биотоплив. Альтернативные виды топлива обладают физическими свойствами, несколько отличными от привычного авиационного керосина . Использование возобновляемых биотоплив, полученных из растений или жирных кислот является весьма перспективным. В настоящее время, на авиацию приходится около 2% антропогенных выбросов CO 2. При использовании биотоплива, уровень выбросов дыма, твердого углерода, окиси углерода, серы и двуокиси углерода в целом уменьшается. Таким образом, применение в авиации биокеросина, полученного из переработанных масел семян ятрофа, взамен традиционного керосина позволит сократить «углеродный след» почти на 80%. Иностранные компании в последние годы проводят исследования возможности применения альтернативных видов топлива без изменения конструкции ГТД . Первый полет самолета на биотопливе состоялся в 2008 г. британской авиакомпаний Virgin Atlantic Airways Ltd, который является собственником этого воздушного судна. Компания Боинг и ее

3 международные партнеры уже работают над переводом биотоплива из стадии тестирования в стадию производства. Боинг Freighter и 787 совершили первые демонстрационны трансатлантические перелеты через Тихий океан на биотопливе в 2011 г. и 2012 г. В мае 2014 года, Нидерландская авиакомпания KLM начала выполнять еженедельные международные рейсы на воздушном судне Airbus A между аэропортами Queen Beatrix, в Ораньестаде, и аэропорта Schiphol в Амстердаме, используя переработанное растительное масло, как авиационное топливо. В России пока не имеется в промышленных масштабах производство биотоплива . Тем не менее, это направление имеет большое будущее из-за наличия больших посевных площадей и водных поверхностей в нашей стране. 1. Постановка задачи. В данной работе исследовались влияние параметров горючих жидкостей на характеристики распыливания за фронтовым устройством камеры сгорания ГТД пневматического типа. Цель эксперимента заключалась в определении дисперсных характеристик аэрозоля, полей скорости и распределения частиц в потоке при пневматическом способе распыливании стандартных (керосин ТС-1), и вязких (биотопливо) топлив. Большая часть топлив, используемых в авиационных двигателях, в нормальных условиях являются жидкими и поэтому должны быть распылены перед подачей в зону горения . В современных силовых установках

4 используются разнообразные форсуночные устройства, отличающиеся не только конструкцией, но и принципами, на которых основана система распыла топлива. Тип распыливания наиболее просто разделить по основной энергии, затрачиваемой на распыл жидкости, т.е. использовать для классификации так называемый энергетический подход . Воспламенение топлива, устойчивость и эффективность горения, уровни эмиссии вредных веществ тесно связаны с процессами дробления жидкого топлива и его смешения с воздухом в системе распыливания . В качестве альтернативного вида горючего была выбрана смесь авиационного керосина ТС-1 (40%), этанола (40%) и касторового масла (20%). Выбранные пропорции модельного биотоплива обеспечивают однородный и хорошо перемешанный состав без расслоения и осадков . Для полученной смеси были определены физические свойства, которые в большинстве случаев влияют на процесс распыла и дробления капель. Кинематическая вязкость жидкости F измерялась вискозиметром ВПЖ-1 с диаметром капилляра 1,52 мм. Коэффициент поверхностного натяжения F рассчитывался по измеренным значениям плотности и температуры. В таблице 1 приведены физические свойства при температуре 20 С, авиационного керосина марки ТС-1 и различных биотоплив, в том числе использованного в настоящей работе.

5 Вид рассматриваемой жидкости Плотность, кг/м 3 Кинематическая вязкость 10 6, м 2 /с Керосин ТС,3 24,3 Модельное 860 6,9 28 биотопливо Спирт этиловый 788 1,550 22,3 Касторовое,4 масло Масло рапсовое,62 33,2 Таблица 1. Коэффициент поверхностного натяжения 10 3, Н/м Из таблицы видно, что основное отличие в свойствах такого показателя как вязкость, величина которой для модельного биотоплива более чем в 5 раз превышает вязкость керосина, а остальные параметры различаются всего лишь на 10 15%. При пневматическом распыливании жидкостей определяющими факторами являются внешние аэродинамические силы и внутренние механизмы воздействия на начальную форму струи. Величина кинематической вязкости определяет толщину формируемой пленки на выходе из топливного сопла, а поверхностное натяжение размер частиц в потоке при дроблении скоростным напором воздуха. Для проведения испытаний был использован фронтовой модуль камеры сгорания с пневматическим распыливанием топлива. Данное фронтовое устройство состоит из центрального тангенциального завихрителя, в котором движется закрученный поток воздуха по осевому топливовоздушному каналу, смешиваясь с топливными струями, периферийного лопаточного завихрителя и внешнего тангенциального завихрителя. Топливный подвод спроектирован таким образом, чтобы

6 распределять топливо в соотношении 1/3 между периферийным и центральным каналом. Внешний тангенциальный завихритель обеспечивает дополнительное перемешивание частично подготовленной в осевом и периферийном канале топливовоздушной смеси. Применение центрального тангенциального завихрителя позволяет увеличить степень закрутки потока и организовать на оси устройства стабильную зону обратных токов. Средний лопаточный завихритель с большим углом закрутки потока обеспечивает распыл основного топлива до мелкодисперсного аэрозоля. Внешний тангенциальный завихритель исключает возможность выброса крупных капель на срез воздушного сопла и за внешнюю границу топливовоздушного факела. Распределенный впрыск топлива по центральному и среднему воздушным каналам позволяет получить аэрозоль с более равномерным распределением концентрации топлива по сечению топливовоздушного факела за срезом сопла. Разработанное фронтовое устройство имеет сборно-разборную конструкцию, что позволяет применять различные типы воздушных сопел и тангенциальных завихрителей в зависимости от предъявляемых требований, в том числе и для распыливания вязких нефтяных и биотоплив. 2. Методика эксперимента. Экспериментальные исследования проводились на стенде лазерной диагностики характеристик топливовоздушных факелов, представленном на рисунке 1. Стенд лазерной диагностики позволяет получать характеристики

7 (поля мелкости распыла, поля концентраций и их пульсаций, углы факела и др.) топливовоздушных факелов, создаваемых форсунками и фронтовыми устройствами. Дополнительно на стенде возможна визуализация потока в прозрачных моделях с кварцевыми стеклами. На стенде применена замкнутая система использования топлива, при которой распыленное топливо оседает на каплеуловителе, собирается в отстойнике топлива, фильтруется и поступает обратно в баллон. Рис. 1. Схема стенда лазерной диагностики. Стенд снабжен аппаратурой для измерений расходов, давлений и температур топлива и воздуха. Расход G Т и плотность топлива измеряется расходомером KROHNE, расход воздуха G В - расходомером PROMASS. Измерение давления производится датчиками ADZ. Цифровая фотосъемка осуществляется трехматричной цветной видеокамерой Canon XL-H1. Оптическая часть стенда оснащена аппаратурой для лазерных измерений

8 качества распыливания и скорости капель по рассеянию света каплями. В настоящей работе физические исследования проводились методом фазодоплеровской анемометрии (РDРА). 3. Результаты экспериментального исследования. Испытания были начаты с определения расходной характеристики фронтового устройства по топливному каналу для керосина и биотоплва, а также по каналам подачи воздуха в модуль. На рисунках 2 и 3 приведены графики расходной характеристики, где P Т и P В означают перепад давлений соответственно топлива и воздуха. Рис. 2. График расходной характеристики по топливному каналу.

9 Рис. 3. График расходной характеристики по воздуху через модуль. Для определения характеристик распыливания были исследованы три основных режима моделирующие работу камеры сгорания на режимах запуска, малого газа и крейсерского. Испытания проводились в условиях открытого пространства с барометрическим давлением P=748 мм рт. ст. и при температуре окружающей среды 20 С. Измерение параметров распыливания выполнялось в поперечном сечении топливовоздушного факела на расстоянии 30 мм от среза воздушного сопла до плоскости лазерно-оптического ножа с интервалом в 5 мм. Опыты проведены при следующих режимных параметрах работы фронтового модуля: При подаче керосина ТС-1: 1. Pв=3,0 кпа; Gв=8,9 г/с; Gт=1,0 г/с; Pт=5,6 кпа; 2. Pв=3,0 кпа; Gв=8,9 г/с; Gт=3,0 г/с; Pт=23,6 кпа; 3. Pв=20,0 кпа; Gв=22,5 г/с; Gт=0,25 г/с; Pт=9,7 кпа;

10 При подаче модельного биотоплива: 1. Pв=3,0 кпа; Gв=8,9 г/с; Gт=1,0 г/с; Pт=7,9 кпа; 2. Pв=3,0 кпа; Gв=8,9 г/с; Gт=3,0 г/с; Pт=7,9 кпа; 3. Pв=20,0 кпа; Gв=22,3 г/с; Gт=0,25 г/с; Pт=9,7 кпа; Иллюстрированные фотографии факелов распыливания по режимам работы фронтового устройства для каждого типа топлива представлены на рисунках 4 и 5. Pв=3,0 кпа; Gт=1 г/с Pв=3,0 кпа; Gт=3 г/с

11 Pв=20,0 кпа; Gт=0,25 г/с Рис. 4. Фотографии факелов распыла по режимам для керосина ТС-1. Pв=3,0 кпа; Gт=1 г/с Pв=3,0 кпа; Gт=3 г/с

12 Pв=20,0 кпа; Gт=0,25 г/с Рис. 5. Фотографии факелов распыла по режимам для биотоплива. Из представленных фотографий можно сказать, что визуально качество распыливания керосина значительно лучше, чем биотоплива. Границы факела четкие, без наличия крупных капель на периферии и стабильным углом раскрытия порядка Распределение капель в потоке достаточно равномерное, без возникновения обогащенных зон. При подаче более вязкого по свойствам биотоплива, общий вид полученного аэрозоля, представленного на фотографиях, уступает по наличию крупных частиц на границах факела распыла. По периферийной границе факела летит больше крупных капель, чем для керосина. Причиной тому служит процесс дробления в камере смешения завихрителя, который не справляется с большим объемом жидкости с повышенными физическими свойствами. Нераздробившиеся частицы, находящиеся в закрученном потоке воздуха, сепарируются на кромку воздушного сопла, где набирается определенная концентрация, и срываются на границу факела распыливания. Однако такие капли дробятся

13 уже на расстоянии одного калибра от сопла завихрителя. Связано это с тем, что струя жидкости на выходе из топливного сопла образует пленку, которая движется по цилиндрической части и начинает дробиться закрученным скоростным напором воздуха, а капли, не успевшие раздробиться, сепарируются и оседают на больших радиусах поверхностей распыла. Характерным свойством для наличия таких капель является повышенная толщина формируемой топливной пленки, которая для вязкого биотоплива превышает более чем в 5 по сравнению со стандартным керосином. Отсюда и возникновение крупных частиц на границах факела, которые отчетливо наблюдаются при увеличении расхода топлива через устройство. А при увеличении перепада давления на фронтовой части крупные капли успевают додрабливаться в большем объеме воздуха. 4. Анализ полученных результатов. Рассмотрим измеренные кривые распределения характеристик потока за фронтовым модулем для каждого типа топлива. Все характеристики распыла были получены при одинаковых условиях работы фронтового модуля. Основное внимание уделялось влиянию вязкости жидкости и коэффициента поверхностного натяжения на процесс распыливания, дробления и смешения с воздухом. Также, при выбранном методе полного пневматического распыливания, жидкости характерным условием для эффективности смесеобразования является параметр отношения расходов воздуха к топливу AAFR, который обычно должен составлять не менее 5.

14 При использовании более вязких топлив, чем больше величина этого параметра, тем процесс распыливания становиться более эффективным, а процесс смешения топлива с воздухом гомогенизируется. Такой способ пневматического распыла активно изучают и применяют в мировой практике ведущих авиадвигателестроительных корпораций при разработке новых фронтов для малоэмиссионных камер сгорания. На рисунках 6 и 7 представлены график распределения характеристик факела распыла при подаче авиационного керосина ТС-1 (осреднение по ансамблю в фиксированной точке пространства).

15 D10 (мкм) D32 (мкм) Z (мм) Z (мм) dpвоз.=3 kпa, Gт=1 г/с dpвоз.=3 kпa, Gт=3 г/с dpвоз.=20 кпа, Gт=0.25 г/с Рис. 6. Графики распределения среднего (D 10) и среднезаутерского (D 32) диаметра капель в поперечном сечении по диаметру факела распыла для керосина ТС-1.

16 U (м/с) Cv*pow(10,5) 10 Z (мм) Z (мм) dpвоз.=3 kпa, Gт=1 г/с dpвоз.=3 kпa, Gт=3 г/с dpвоз.=20 кпа, Gт=0.25 г/с Рис. 7. Графики распределения осевой скорости (U) и полей объемной концентрации потоков частиц в поперечном сечении по диаметру факела распыла для керосина ТС-1.

17 Полученные распределения дисперсности аэрозоля показывают, что основное отличие при изменении отношений расходов проявляется на крайних точках факела. В целом факел распыла имеет однородную и хорошо перемешанную структуру. Капли распределены в потоке равномерно по размерам, а средние по плоскости измерения значения Заутерского диаметров D 32 для режимов составляют: 1 44,9 мкм, 2 48,7 мкм, 3 22,9 мкм. На оси устройства формируется стабильная зона обратных токов в пределах от 2,5 8,0 м/с на перепаде давления в 3 кпа а максимальное значение отрицательной скорости достигает 12 м/с на режиме при Pв=20 кпа, а ширина при этом составляет 20 мм. Уровень параметров такого аэрозоля позволит сжигать топливо в камере сгорания ГТД с высокой полнотой сгорания и обеспечить низкий уровень эмиссии вредных выбросов. Теперь рассмотрим характеристики аэрозоля при подаче более вязкой жидкости в аналогичных условиях проводимого эксперимента. Графики распределения по дисперсности, скорости и концентрации частиц в потоке за горелкой представлены на рисунках 8 и 9.

18 D10 (мкм) D32 (мкм) 100 Z (мм) Z (мм) dpвоз.=3 kпa, Gт=1 г/с dpвоз.=3 kпa, Gт=3 г/с dpвоз.=20 kпa, Gт=0.25 г/с Рис. 8. Графики распределения среднего (D 10) и среднезаутерского (D 32) диаметра капель в поперечном сечении по диаметру факела распыла для модельного биотоплива.

19 U (м/с) Cv*pow(10,5) 10 Z (мм) Z (мм) dpвоз.=3 kпa, Gт=1 г/с dpвоз.=3 kпa, Gт=3 г/с dpвоз.=20 kпa, Gт=0.25 г/с Рис. 9. Графики распределения осевой скорости (U) и поле объемной концентрации потоков частиц в поперечном сечении по диаметру факела распыла для модельного биотоплива.

20 Проведя сравнительный анализ представленных графиков характеристик потока за фронтовым модулем, видим, что при использовании альтернативного топлива для выбранного устройства с пневматическим способом распыла структура аэрозоля практически не изменилась. По дисперсности полученный аэрозоль не уступает керосину, а местами даже и лучше. Различия наблюдаются по плотности распределения капель на периферии факела, где сконцентрирована основная масса крупных частиц. В центральной же зоне засеяно больше мелких по размерам частиц, чем для ТС-1. Измеренный средний D 32 размер капель по сечению факела для биотоплива по режимам составляет: 1 32 мкм, 2 50 мкм, 3 20 мкм. Полученный средний по плоскости измерения уровень дисперсной характеристики аэрозоля D 32 для модельного биотоплива на 30% превосходит D 32 для ТС-1 на пусковом режиме работы фронтового модуля. На остальных двух режимах с большими значениями AAFR дисперсность аэрозоля практически не меняется. Так как свойства испытуемой жидкость в основном отличаются по вязкости, то поле распределения скорости частиц в потоке изменилось в зоне обратных токов. Максимальная отрицательная скорость сохранилась только на двух режимах, и снизилась до 5 м/с, а ширина отрывной зоны составляет от 6 мм до 9 мм. При больших расходах подачи топлива (режим 2) отрицательная скорость исчезает и переходит в положительную и составляет 4 м/с. Это объясняется торможением потока воздуха, находящимися в нем крупными каплями, которые по массе больше чем капли керосина. В зоне

21 обратных токов сконцентрированы, в основном, самые мелкие частицы, которые находятся в постоянном движении внутри циклона. Затрачиваемой на дробление капель жидкости энергии закрученного воздуха на дробление капель жидкости, начинает не хватать для выработки отрицательной скорости частиц в зоне обратных токов отсюда и уменьшение этой компоненты для биотоплива. При этом максимальные значения скорости не изменились, и лежат в диапазоне от 10 м/с до 23 м/с. Капли распределены в потоке равномерно по размерам и по диаметру факела распыливания. 5. Заключение. В результате проведенных экспериментальных исследований по влиянию параметров жидкостей на процесс распыливания и смешения топлива с воздухом во фронтовом устройстве пневматического типа можно сделать следующие выводы. 1. При пневматическом способе распыливании жидкостей с различными свойствами, вязкость слабо влияет на дисперсность капель в потоке. Основным параметром, который оказывает влияние на процесс дробления и размер капель является коэффициент поверхностного натяжения. 2. При распыливании альтернативных топлив высокой вязкости отражается в основном, на поле осевой скорости в зоне обратных токов, но при этом общий характер течения не нарушается. Пиковые значения

22 скорости не измены, но стабилизационная зона сужается вдвое, а максимальная составляющая компонента отрицательной скорости частиц в потоке сохраняется лишь при небольших расходах жидкости. 3. Пневматический распыл жидкости обеспечивает требуемый уровень характеристик топливовоздушного потока, и может быть использован для применения как нефтяных, так и альтернативных топлив при подготовке гомогенной смеси и эффективного сжигания в камере сгорания современных и перспективных газотурбинных двигателей. Проведенные опыты позволили изучить влияние физических свойств жидких топлив на характеристики аэрозоля при пневматическом способе распыливании жидкости. Библиографический список 1. Охрана окружающей среды. Приложение 16 к Конвенции о международной гражданской авиации. Эмиссия авиационных двигателей, URL: y.pdf 2. Васильев А.Ю., Челебян О.Г., Медведев Р.С. Особенности применения биотопливной смеси в камерах сгорания современных газотурбинных двигателях // Вестник СГАУ (41). С Liu, K., Wood, J. P., Buchanan, E. R., Martin, P., and Sanderson, V., Biodiesel as An Alternative Fuel in Siemens DLE Combustors: Atmospheric and

23 HighPressure Rig Testing, ASME Journal of Engineering for Gas Turbines and Power,Vol. 132, No. 1, Дамская И.А., Разносчиков В.В. Методика определения новых составов альтернативных топлив // Вестник Московского авиационного института Т С Lefebvre A.H., Ballal D.R. Gas Turbine Combustion: Alternative Fuels and Emissions, 3rd ed., CRC Press, Силуянова М.В., Попова Т.В. Исследование теплообменного аппарата для газотурбинных двигателей сложного цикла // Труды МАИ, 2015, выпуск 80, URL: 7. Силуянова М.В., Попова Т.В. Разработка методики проектирования и расчета теплообменного аппарата для газотурбинных двигателей сложного цикла // Труды МАИ, 2016, выпуск 85, URL: 8. Дитякин Ю.Ф., Клячко Л.А., Новиков Б.В., Ягодкин В.И. Распыливание жидкостей. - М.: Машиностроение, с. 9. Законы горения / Под общ. ред. Ю.В. Полежаева. - М.: Энергомаш, с. 10. Лефевр А. Процессы в камерах сгорания ГТД. - М.; Мир, с. 11. Anna Maiorova, Aleksandr Vasil"ev and Oganes Chelebyan, "Biofuels - Status and Perspective", book edited by Krzysztof Biernat, ISBN , Published: September 30, 2015, ch.16, pp


УДК 621.452.3.034 СРАВНЕНИЕ ХАРАКТЕРИСТИК РАЗЛИЧНЫХ ТИПОВ ФОРСУНОК, РАБОТАЮЩИХ С ИСПОЛЬЗОВАНИЕМ ВОЗДУШНОГО ПОТОКА 2007 А. Ю. Васильев Центральный институт авиационного моторостроения, Москва В работе приведена

УДК 61.45.034.3 ПРОЕКТИРОВАНИЕ И ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ФОРСУНОЧНЫХ МОДУЛЕЙ 006 А.Ю. Васильев, А.И. Майорова, А.А. Свириденков, В.И. Ягодкин Центральный институт авиационного моторостроения им.

УДК 621.45.022.2 СРАВНИТЕЛЬНЫЙ АНАЛИЗ РАСПРЕДЕЛЕНИЙ ТОПЛИВА В ФОРСУНОЧНЫХ МОДУЛЯХ С ТРЕХЪЯРУСНЫМ ЗАВИХРИТЕЛЕМ 2007 В. В. Третьяков Центральный институт авиационного моторостроения им. П. И. Баранова, г.

УДК 536.46 УПРАВЛЕНИЕ ХАРАКТЕРИСТИКАМИ ГОРЕНИЯ АЛЮМИНИЕВО-ВОЗДУШНОГО ФАКЕЛА В СПУТНОМ ПОТОКЕ ВОЗДУХА 2007 А. Г. Егоров, А. Н. Попов Тольяттинский государственный университет Представлены результаты экспериментальных

Технические науки УДК 536.46 УПРАВЛЕНИЕ ХАРАКТЕРИСТИКАМИ ГОРЕНИЯ АЛЮМИНИЕВО- ВОЗДУШНОГО ФАКЕЛА В СПУТНОМ ПОТОКЕ ВОЗДУХА 007 А. Г. Егоров, А. Н. Попов Тольяттинский государственный университет Представлены

Вестник Самарского государственного аэрокосмического университета 3 (41) 213, часть 2 УДК 621.452.3.34 ОСОБЕННОСТИ ПРИМЕНЕНИЯ БИОТОПЛИВНОЙ СМЕСИ В КАМЕРАХ СГОРАНИЯ СОВРЕМЕННЫХ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ

Электронный журнал «Труды МАИ». Выпуск 38 www.mai.ru/science/trudy/ УДК: 621.45 Экспериментальные исследования инициирования детонации и режимов работы модели камеры пульсирующего детонационного двигателя

Способ совместной подачи растительных масел и дизельного топлива д.т.н., проф. Шатров М.Г., к.т.н. Мальчук В.И., к.т.н. Дунин А.Ю., Езжев А.А. Московский автомобильно-дорожный государственный технический

Электронный журнал «Труды МАИ». Выпуск 65 www.mai.ru/science/trudy/ УДК 629.7.036.22.001 (024) Использование программного комплекса ANSYS для создания экспериментальной установки, способной моделировать

10ЛК_ПАХТ_ТЕХНОЛОГИ_Ч.1_ ДИСПЕРГИРОВАНИЕ ГАЗОВ И ЖИДК2_КАЛИШУК 10.2 Диспергирование идкостей Возмоны два метода диспергирования идкостей: капельный и струйный. Капельное диспергирование осуществляется

Труды МАИ. Выпуск 88 УДК 536.8 www.mai.ru/science/trudy/ Влияние геометрических характеристик завихрителя на вихревую структуру потока в импульсной камере сгорания Исаев А.И.*, Майрович Ю.И.**, Сафарбаков

УДК 536.24 АДИАБАТИЧЕСКОЕ СМЕШЕНИЕ В ЗАКРУЧЕННОЙ ПРИСТЕННОЙ СТРУЕ Шишкин Н.Е. Институт теплофизики им.с.с.кутателадзе СО РАН, Новосибирск, Россия АННОТАЦИЯ Рассматривается распределение температуры и концентрации

УДК 621.436 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ РАСПЫЛИВАНИЯ БИОТОПЛИВ ПОД РАЗЛИЧНЫМ ДАВЛЕНИЕМ ВПРЫСКА С ИСПОЛЬЗОВАНИЕМ СРЕДСТВ ОПТИЧЕСКОГО КОНТРОЛЯ КАЧЕСТВА РАСПЫЛИВАНИЯ А.В. Еськов, А.В. Маецкий Приводятся

УДК 621.452 ИССЛЕДОВАНИЕ ТЕМПЕРАТУРНОГО ПОЛЯ НА ВЫХОДЕ КАМЕРЫ СГОРАНИЯ С ПОВОРОТОМ ПОТОКА В ГАЗОСБОРНИКЕ 2006 Г. П. Гребенюк 1, С. Ю. Кузнецов 2, В. Ф. Харитонов 2 1 ФГУП НПП Мотор, г. Уфа 2 Уфимский государственный

УДК 533.6.011.5 ВЗАИМОДЕЙСТВИЕ ВСТРЕЧНОГО ПОТОКА С ПОВЕРХНОСТЬЮ СПУСКАЕМОГО КОСМИЧЕСКОГО АППАРАТА В.Н. Крюков 1, Ю.А. Кузма-Кичта 2, В.П. Солнцев 1 1 Московский авиационный институт (государственный технический

Лекция 5. 2.2.Сжигание газообразного и жидкого топлива Сжигание газов производится в топочной камере, куда горючая смесь подается через горелки. В топочном пространстве в результате сложных физикохимических

Относится к циклу специальных дисциплин и изучает основы теории горения, организацию рабочего процесса в камерах сгорания ГТД, характеристики КС, способы учета и снижения эмиссии вредных веществ, расчет

УДК 621.45.022.2 РАСЧЕТНОЕ ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЯ ТОПЛИВА В ФОРСУНОЧНОМ МОДУЛЕ КАМЕРЫ СГОРАНИЯ 2006 В. В. Третьяков Центральный институт авиационного моторостроения, г. Москва Представлены результаты

Использование программного комплекса FlowVision при доводке конструкции малотоксичной камеры сгорания. Булысова Л.А., мнс Всероссийский теплотехнический институт, Москва При разработке перспективных ГТУ

Вестник Самарского государственного аэрокосмического университета (41) 1 г. УДК 61.48:56.8 ИССЛЕДОВАНИЕ КАЧЕСТВА ПОДГОТОВКИ ТОПЛИВОВОЗДУШНОЙ СМЕСИ И ЕГО ВЛИЯНИЯ НА ВЫБРОСЫ NOx В МАЛОЭМИССИОННОЙ КАМЕРЕ

УДК 621.43.056 Г.Ф. РОМАНОВСКИЙ, д-р техн. наук, С.И. СЕРБИН, д-р техн. наук, В.Г. ВАНЦОВСКИЙ, В.В. ВИЛКУЛ Национальный университет кораблестроения имени адмирала Макарова, Научно-производственный комплекс

УДК 697.932.6 Форсунка на основе «RU-эффекта» к.т.н. Рубцов А.К., Гурко Н.А, Парахина Е.Г. Университет ИТМО 191002, Россия, Санкт-Петербург, ул. Ломоносова, 9 Многочисленные экспериментальные исследования

2014 НАУЧНЫЙ ВЕСТНИК МГТУ ГА 205 УДК 621.452.3 СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОБЛЕМЫ И ПУТИ УЛУЧШЕНИЯ ХАРАКТЕРИСТИК РАБОЧЕГО ПРОЦЕССА КАМЕР СГОРАНИЯ МАЛОРАЗМЕРНЫХ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ А.М. ЛАНСКИЙ, С.В. ЛУКАЧЕВ,

КОМПЛЕКС КОНТРОЛЯ ДИСПЕРСНОГО СОСТАВА КАПЕЛЬ СТРУИ РАСПЫЛЕННОГО ТОПЛИВА В.В. Евстигнеев, А.В. Еськов, А.В. Клочков Бурное развитие техники в настоящее время приводит к значительному конструктивному усложнению

Федеральная целевая программа «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014 2020 годы» Соглашение 14.577.21.0087 от 05.06.2014 на период

УДК 658.7; 518.874 А. П. Поляков, д. т. н., проф.; Б. С. Мариянко ИССЛЕДОВАНИЕ ВЛИЯНИЯ НА ПОКАЗАТЕЛИ ГАЗОДИЗЕЛЯ УСОВЕРШЕНСТВОВАНИЯ СИСТЕМЫ ПИТАНИЯ ПРИМЕНЕНИЕМ ГАЗОВПУСКНОГО УСТРОЙСТВА В статье приведены

СБОРНИК НАУЧНЫХ ТРУДОВ НГТУ. 2006. 1(43). 135 139 УДК 66-096.5 СГОРАНИЕ В ВИХРЕВОЙ КАМЕРЕ С ЦЕНТРОБЕЖНЫМ ПСЕВДООЖИЖЕННЫМ СЛОЕМ * В.В. ЛУКАШОВ, А.В. МОСТОВОЙ Экспериментально исследовалась возможность горения

Электронный журнал «Труды МАИ». Выпуск 67 www.mai.ru/science/trudy/ УДК 621.515 Проблемы создания газотурбинного пульсирующего детонационного двигателя Щипаков В. А. Московский авиационный институт (национальный

УДК 621.45.022.2 ВЛИЯНИЕ МЕЖФАЗОВОГО ОБМЕНА НА СМЕСЕОБРАЗОВАНИЕ В МОДУЛЬНОЙ КАМЕРЕ СГОРАНИЯ 2002 А. И. Майорова, А. А. Свириденков, В. В. Третьяков Центральный институт авиационного моторостроения им.

УДК 532.5 + 621.181.7 АНАЛИЗ ПРОЦЕССОВ ГОРЕНИЯ В ТУРБУЛЕНТНЫХ СМЕШИВАЮЩИХСЯ ОСЕВЫХ И ТАНГЕНЦИАЛЬНЫХ ПОТОКАХ 47 Докт. техн. наук, проф. ЕСЬМАН Р. И., канд. техн. наук, доц. ЯРМОЛЬЧИК Ю. П. Белорусский национальный

БИЛЕТ 1 Вопрос: Гидростатика. Основные физические свойства жидкостей. Задача 1:Найти безразмерные критерии подобия из следующих размерных величин: а) p (Па), V (м 3), ρ (кг/м 3), l (м), g (м/с 2); б)

Уфа: УГАТУ, 2010 Т. 14, 3 (38). С. 131 136 АВИАЦИОННАЯ И РАКЕТНО-КОСМИЧЕСКАЯ ТЕХНИКА УДК 621.52 А. Е. КИШАЛОВ, Д. Х. ШАРАФУТДИНОВ ОЦЕНКА СКОРОСТИ РАСПРОСТРАНЕНИЯ ПЛАМЕНИ С ПОМОЩЬЮ ЧИСЛЕННОГО ТЕРМОГАЗОДИНАМИЧЕСКОГО

Труды МАИ. Выпуск 90 УДК: 533.6.01 www.mai.ru/science/trudy/ Регистрация аэродинамических параметров возмущений среды при движении объекта Картуков А.В., Меркишин Г.В.*, Назаров А.Н.**, Никитин Д.А.***

ОТРАБОТКА ТЕХНОЛОГИИ ИСПЫТАНИЙ МОДЕЛЬНОГО ПВРД С ГОРЕНИЕМ ВОДОРОДА В АЭРОДИНАМИЧЕСКОЙ ТРУБЕ Внучков Д.А., Звегинцев В.И., Иванов И.В., Наливайченко Д.Г., Старов А.В. Институт Теоретической и Прикладной

СЖИГАНИЕ МАЗУТА Лекция 6 5.1. Основные свойства мазута В котлах крупных тепловых станций и отопительных котельных, работающих на жидком топливе, как правило, применяют мазут. Физические свойства мазута

УДК 532.5 МОДЕЛИРОВАНИЕ ПРОЦЕССА РАСПЫЛЕНИЯ И СЖИГАНИЯ ТОНКОДИСПЕРСНЫХ ВОДОУГОЛЬНЫХ СУСПЕНЗИЙ Мурко В.И. 1), Карпенок В.И. 1), Сенчурова Ю.А. 2) 1) ЗАО НПП «Сибэкотехника», г. Новокузнецк, Россия 2) Филиал

Тот вид топлива, который будет использоваться. Исходя из этого можно сделать вывод, что развитие установок для сжигания мазута при повышении стоимости природного газа будет только увеличиваться, и в будущем

Электронный журнал «Труды МАИ». Выпуск 41 www.mai.ru/science/trudy/ УДК 621. 452. 3 Исследование аэродинамики и массообмена в вихревых горелках камер сгорания газотурбинных двигателей. А.М. Ланский, С.В.

УДК 536.46 Д. А. Я г о д н и к о в, А. В. И г н а т о в ВЛИЯНИЕ ДИСПЕРСНОСТИ АЛЮМИНИЯ НА ХАРАКТЕРИСТИКИ ВОСПЛАМЕНЕНИЯ И ГОРЕНИЯ ЭНЕРГЕТИЧЕСКИХ КОНДЕНСИРОВАННЫХ СИСТЕМ Приведены результаты экспериментальных

Вестник Самарского государственного аэрокосмического университета, 2, 27 УДК 62.452.3.34 ДИАГНОСТИКА КАЧЕСТВА СМЕСЕОБРАЗОВАНИЯ В ФАКЕЛЕ РАСПЫЛЕННОГО ФОРСУНКАМИ ТОПЛИВА ОПТИЧЕСКИМИ МЕТОДАМИ 27 А. Ю. Васильев,

Электронный журнал «Труды МАИ». Выпуск 71 www.mai.ru/science/trudy/ УДК 621.454.2 Проблемные вопросы энергетической увязки параметров жидкостных ракетных двигателей Беляев Е.Н. 1 *, Воробьев А. Г 1 **.,

Определены дополнительные погрешности при измерении концентрации оксида углерода термохимическими сенсорами. Получен ряд аналитических выражений по расчету данных погрешностей, а также поправок на отклонения

НПКФ «АРГО» ЗАО НПКФ «АВТОМАТИЗАЦИЯ РЕЖИМОВ ГОРЕНИЯ» «АРГО» Москва 2009 г. Ситуация в нефтеперерабатывающей отрасли и на рынке нефтепродуктов Основу нефтепереработки России составляют 28 НПЗ, созданные

Электронный журнал «Труды МАИ». Выпуск 72 www.mai.ru/science/trudy/ УДК 629.734/.735 Метод расчета аэродинамических коэффициентов летательных аппаратов с крыльями в схеме «икс», имеющими малый размах Бураго

УДК 662.62 Вязовик В.Н. Черкасский государственный технологический университет, г. Черкассы ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ ЭЛЕКТРОННОКАТАЛИЧЕСКОГО ГОРЕНИЯ ТВЕРДОГО ТОПЛИВА Рассмотрены основные загрязнители и их

СТАТИСТИКА И ОБРАБОТКА РАСЧЕТНЫХ И ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ХАРАКТЕРИСТИК МЭКС Булысова Л.А. 1,а, н.с., Васильев В.Д. 1,а, н.с. 1 ОАО "ВТИ", ул. Автозаводская, д.14, Москва, Россия Краткая аннотация. Статья

УДК 621.452.3.(076.5) ИССЛЕДОВАНИЕ УПРАВЛЕНИЯ ОТРЫВОМ ПОГРАНИЧНОГО СЛОЯ В ДИФФУЗОРНЫХ КАНАЛАХ ПРИ ПОМОЩИ ВИХРЕВЫХ ЯЧЕЕК 2007 С. А. Смирнов, С. В. Веретенников Рыбинская государственная авиационная технологическая

Электронный журнал «Труды МАИ». Выпуск 69 www.mai.ru/science/trudy/ УДК 621.45.048, 629.7.036.5 Численное моделирование процесса смесеобразования в модельной камере сгорания с лазерным зажиганием при работе

Оценка использования АСКТ для двигателей поршневой авиации Костюченков Александр Николаевич, Начальник сектора перспектив развития АПД, к.т.н. 1 Ограничение применения авиабензинов Lycoming IO-580-B М-9ФВ

Г О С У Д А Р С Т В Е Н Н Ы Й С О Ю З А С С Р С Т А Н Д А Р Т ФОРСУНКИ МЕХАНИЧЕСКИЕ И ПАРОМЕХАНИЧЕСКИЕ ТИПЫ И ОСНОВНЫЕ ПАРАМЕТРЫ. ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ ГОСТ 2 3 6 8 9-7 9 Издание официальное БЗ

УЧЕНЫЕ ЗАПИСКИ ЦАГИ Том XXXVI I 2006 4 УДК 533.6.071.4 ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ГАЗОВЫХ ЭЖЕКТОРОВ С ОБЫЧНЫМ И ПЕРФОРИРОВАННЫМ СОПЛАМИ ПРИ ВЫСОКОЙ ТЕМПЕРАТУРЕ НИЗКОНАПОРНОГО ГАЗА Ю. К. АРКАДОВ, Г.

Авиационная и ракетно-космическая техника УДК 532.697 ПАРАМЕТРИЧЕСКАЯ ДОВОДКА ОТДЕЛЬНЫХ ЭЛЕМЕНТОВ ЖАРОВОЙ ТРУБЫ ГТД 2006 А. Ю. Юрина, Д. К. Василюк, В. В. Токарев, Ю. Н. Шмотин ОАО НПО Сатурн, г. Рыбинск

(19) Евразийское (11) (13) патентное ведомство 015316 B1 (12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ (45) Дата публикации (51) Int. Cl. и выдачи патента: 2011.06.30 C21B 9/00 (2006.01) (21) Номер

Труды МАИ. Выпуск 84 УДК 629.7.014 www.mai.ru/science/trudy/ Анализ влияния внедрения искривленных дефлекторов на характеристики плоского реактивного сопла Силуянова М.В.*, Шпагин В.П.**, Юрлова Н.Ю.***

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПАРАМЕТРОВ ВПРЫСКА НА РАСПАД СТРУИ ТОПЛИВА В ДВС С НЕПОСРЕДСТВЕННЫМ ВПРЫСКОМ. Масленников Д.А. Донецкий Национальный Технический Университет, Донецк, Украина Аннотация: В данной работе

Оглавление ВВЕДЕНИЕ... 8 1 ЛИТЕРАТУРНЫЙ ОБЗОР И АНАЛИЗ ПОКАЗАТЕЛЕЙ РАБОТЫ ДВИГАТЕЛЕЙ ПРИ ПРИМЕНЕНИИ АЛЬТЕРНАТИВНЫХ ТОПЛИВ... 10 1.1 Обоснование необходимости использования альтернативных топлив в двигателях...

УДК 66.041.45 М. А. Таймаров, А. В. Симаков ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ СТРУКТУРЫ ФАКЕЛА В ТОПКЕ КОТЛА ПРИ СЖИГАНИИ МАЗУТА Ключевые слова: запальник, прямоточная струя, закрученная струя, горелки. При сжигании

2 Использование CAE-системы FlowVision для исследования взаимодействия потоков жидкости в центробежно-струйной форсунке Елена Туманова В данной работе численное исследование проводилось с использованием

Выявление Режимов Ультразвукового Воздействия для Распыления Жидкостей с Заданными Дисперсностью и Производительностью Владимир Н. Хмелев, Senior Member, IEEE, Андрей В. Шалунов, Анна В. Шалунова, Student

АННОТАЦИЯ дисциплины (учебного курса) М2.ДВ3 Системы двигателей внутреннего сгорания (шифр и наименование дисциплины (учебного курса)) В курсе рассматриваются: топливные системы двигателей с внутренним

Экспериментальное исследование дисковой микротурбины. Канд. тех. наук А. Б. Давыдов, д-р. тех. наук А. Н. Шерстюк, канд. тех. наук А. В. Наумов. («Вестник машиностроения» 1980г. 8) Задача повышения эффективности

Изобретение относится к сжиганию топлива и может найти применение в бытовой технике, теплоэнергетике, на предприятиях по сжиганию и переработке отходов. Известен способ сжигания топлива, при котором создают

Пылеуловители на встречных закрученных потоках Инерционные пылеуловители на встречных закрученных потоках (ПВ ВЗП) обладают следующими достоинствами: - высокая степень улавливания частиц тонкодисперсной

Д. т. н. К. И. Логачёв (), к. т. н. О. А. Аверкова, Е. И. Толмачёва, А. К. Логачёв, к. т. н. В. Г. Дмитриенко ФГБОУ ВПО «Белгородский государственный технологический университет им. В. Г. Шухова», г.

АНАЛИЗ ВЛИЯНИЯ ПАРАМЕТРОВ КОАКСИАЛЬНОЙ ЛАЗЕРНОЙ НА- ПЛАВКИ НА ФОРМИРОВАНИЕ ВАЛИКОВ ГРИГОРЬЯНЦ А.Г., МИСЮРОВ А.И., ТРЕТЬЯКОВ Р.С. Ключевые слова: Лазерная наплавка, параметры процесса лазерной наплавки,

УСТОЙЧИВОСТЬ ВОДОГАЗОВОЙ СМЕСИ К РАССЛОЕНИЮ В ТРУБОПРОВОДЕ Долгов Д.В. В статье получено выражение параметра устойчивости газожидкостной смеси к расслоению в горизонтальном трубопроводе, позволяющий рассчитывать

Предлагаемые мероприятия способствуют понижению скорости движения транспортных средств и ее поддержанию в рамках установленного ограничения на исследуемом участке (40 км/ч). УДК 656 ВЫБОР ФОРМЫ КАМЕРЫ

Понравилась статья? Поделитесь ей